A combined B-spline-neural-network and ARX model for online identification of nonlinear dynamic actuation systems
نویسنده
چکیده
This paper presents a block oriented nonlinear dynamic model suitable for online identification.The model has the well known Hammerstein architecture where as a novelty the nonlinear static part is represented by a B-spline neural network (BSNN), and the linear static one is formalized by an auto regressive exogenous model (ARX). The model is suitable as a feed-forward control module in combination with a classical feedback controller to regulate velocity and position of pneumatic and hydraulic actuation systems which present non stationary nonlinear dynamics. The adaptation of both the linear and nonlinear parts is taking place simultaneously on a patterby-patter basis by applying a combination of error-driven learning rules and the recursive least squares method. This allows to decrease the amount of computation needed to identify the model’s parameters and therefore makes the technique suitable for real time applications. The model was tested with a silver box benchmark and results show that the parameters are converging to a stable value after 1500 samples, equivalent to 7.5s of running time. The comparison with a pure ARX and BSNN model indicates a substantial improvement in terms of the RMS error, while the comparison with alternative non linear dynamic models like the NNOE and NNARX, having the same number of parameters but greater computational complexity, shows comparable performances.
منابع مشابه
Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملPrediction of Above-elbow Motions in Amputees, based on Electromyographic(EMG) Signals, Using Nonlinear Autoregressive Exogenous (NARX) Model
Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG), as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 175 شماره
صفحات -
تاریخ انتشار 2016